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Abstract

Background: Databases of literature-curated protein-protein interactions (PPIs) are often used to interpret high-
throughput interactome mapping studies and estimate error rates. These databases combine interactions across
thousands of published studies and experimental techniques. Because the tendency for two proteins to interact
depends on the local conditions, this heterogeneity of conditions means that only a subset of database PPIs are
interacting during any given experiment. A typical use of these databases as gold standards in interactome
mapping projects, however, assumes that PPIs included in the database are indeed interacting under the
experimental conditions of the study.

Results: Using raw data from 20 co-fractionation experiments and six published interactomes, we demonstrate that
this assumption is often false, with up to 55% of purported gold standard interactions showing no evidence of
interaction, on average. We identify a subset of CORUM database complexes that do show consistent evidence of
interaction in co-fractionation studies, and we use this subset as gold standards to dramatically improve
interactome mapping as judged by the number of predicted interactions at a given error rate.

Conclusions: We recommend using this CORUM subset as the gold standard set in future co-fractionation studies.
More generally, we recommend using the subset of literature-curated PPIs that are specific to the experimental
context whenever possible.
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Background
Proteins perform the majority of cellular functions ne-
cessary for life. Nearly all individual proteins are modu-
lar components of larger macromolecular structures, i.e.
protein complexes, and the exact role of a protein within
a cell is controlled by its interactions with co-complex
members. Uncovering which proteins interact, i.e. the
interactome, is therefore central to understanding the
molecular mechanisms of life.
This task is complicated by a combinatorial explosion,

however: a proteome containing 20000 proteins has
nearly 200 million potential pairwise interactions and
many more higher order complexes. High-throughput
techniques that analyze thousands of proteins simultan-
eously with minimal bias offer a solution to this problem
[1]. For example, PCP-SILAC (protein correlation

profiling–stable isotope labeling of amino acids in cell
culture), a co-fractionation (CF) technique, separates
protein complexes into fractions according to their size
(rotational cross-section), and associates proteins whose
amounts are correlated between fractions. As each frac-
tion is analyzed with mass spectrometry, PCP-SILAC
and other CF techniques can detect tens of thousands of
interacting proteins [2–8]. In order to separate signal
from noise, it is common for high-throughput protein
interactome studies to consult databases of known, un-
equivocal interactions (“gold standards”) [2, 3, 9, 10]. For
example, co-fractionation studies often use gold stand-
ard interactions as training labels in a machine learning
classifier [2, 3, 11]. Gold standards are also used to de-
fine false positive/negative and true positive/negative in-
teractions in order to calculate common statistics such
as precision, recall, and sensitivity [5–7, 11, 12].
Gold standard databases are assembled from different

experiments and techniques, each with a unique set of
biases. Since protein-protein interactions (PPIs) can be
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context-specific and transient, single datasets, which are
typically generated by a single technique, can disagree
with gold standards. This variability partly reflects true
biological differences. For example, the majority of in
vivo yeast PPIs were observed to depend on environ-
mental and chemical conditions [13]. Some assays also
impose technical biases that limit detectable PPIs, such
as a bias of some high-throughput techniques toward
highly expressed or well studied protein pairs, or a bias
against PPIs involving transmembrane proteins [12].
Therefore, gold standard databases that include all inter-
actions that can occur will fail to describe the subset of
interactions that are either not occurring due to current
experimental conditions, or that are unlikely to be de-
tected due to technical limitations.
Therefore, a distinction should be made between the

large, curated compilations of interactions across many
studies, and the gold standard sets used as a reference
for a single dataset. Our own focus has been on interac-
tome mapping using co-fractionation, so here we quan-
tify the proportion of gold standard interactions that fail
to display any evidence for interaction in 20
co-fractionation datasets. Using a conservative measure
of protein interaction, we find that between 19 and 55%
of gold standard PPIs display no evidence of interacting.
Across co-fractionation experiments, there is evidence

that a subset of literature-curated complexes consistently
co-fractionates, suggesting this subset would be a more
appropriate gold standard reference set. Indeed, the
number of predicted interactions at a given stringency
increases dramatically when using this subset as a gold
standard set. We recommend using this subset as the
gold standard reference in future co-fractionation stud-
ies and, more generally, using experiment- and
condition-specific gold standards whenever possible.

Results
Discrepancies exist between gold standards and
individual datasets
Using the CORUM database of protein complexes [14], we
first examined the degree to which literature-curated PPIs
were unsupported by data from single co-fractionation
datasets. Many database PPIs show clear evidence of inter-
action, as shown by their tendency to co-fractionate for
the entire chromatogram (Fig. 1a) or a portion of the chro-
matogram (Fig. 1b). However, other protein pairs from
within a single CORUM complex show little evidence of
interaction in certain experiments. For example, two
chaperone proteins, HSP-90a (UniProt ID P07900) and
BiP (P11021) are known to interact as part of a larger
chaperone multiprotein complex [15] (CORUM complex
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Fig. 1 Not all CORUM gold standard interactions are supported by co-fractionation data. a Example gold standard pair with strong evidence for
interaction. Q9NQP4 and E5RGS4, prefoldin complex. b Example gold standard pair with evidence for interaction. Q14103 and O75534, PIN1-AUF1
complex. c Example gold standard protein pair with little data-derived evidence for interaction. P11021 and P07900, HCF-1 complex. d Histogram
of Pearson correlation coefficients and e Euclidean distance between every gold standard interaction in our co-fractionation data (20 datasets,
grey; average, black). All other protein pairs in our data are shown, the vast majority of which are not interacting (red). Example pairs A, B, C are
shown (arrows)
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“HCF-1”), yet there is little evidence that the two proteins
co-fractionate in our data (Fig. 1c).
More broadly, across 20 PCP-SILAC co-fractionation

datasets, the majority of random protein pairs do not
co-fractionate, as quantified by anti-correlated fraction-
ation profiles, a conservative measure of which protein
pairs are non-interacting (Fig. 1d). While the majority of
gold standard protein pairs have positively correlated
co-fractionation profiles (black), 23% (34442/149477) are
negatively correlated. All 20 datasets include a similar
proportion of negatively correlated gold standard pairs
(23 +/− 5%, mean +/− st.d.). This pattern is similar when
co-fractionation is measured with Euclidean distance,
another standard measure (Fig. 1e).
While the full set of CORUM complexes is a widely

used gold standard [6, 7, 9–11], there are many other
literature-curated interaction databases. In addition to
CORUM, we examined nine databases of protein interac-
tions [16–24] and two subsets of CORUM used previously
as gold standards [2, 3]. These range from databases that
include interactions from high-throughput experiments to
manually curated databases composed exclusively of
low-throughput experiments. All had anti-correlated
protein pairs in our co-fractionation datasets (Fig. 2). As a
baseline, 62% of all protein pairs, the large majority of
which can be assumed to be non-interacting, were
anti-correlated (Fig. 2, left). The proportion of
anti-correlated pairs in gold standard sets ranged from
55% (HPRD) to 19% (CORUM). Restricting gold standard
PPIs to those supported by two or more publications

limits but does not eliminate uncorrelated protein pairs
(Additional file 1: Figure S1). Therefore all interaction da-
tabases investigated here contain protein pairs that are not
supported by our co-fractionation data, and comparisons
to CORUM give a conservative estimate of the discrep-
ancy between our data and interaction databases.
Since some PPI databases include evidence codes, we

also analyzed whether the proportion of anti-correlated
protein pairs differed as a function of evidence code
(Additional file 1: Figure S2). Indeed, database PPIs with
evidence codes relating to co-fractionation-like experi-
ments (e.g. “molecular sieving”, “density sedimentation”)
tended to have fewer anti-correlated pairs in our
co-fractionation data than PPIs derived from other experi-
ment types (e.g. “LUMIER”). This suggests that there is a
subset of database PPIs that more accurately describes
co-fractionation datasets, and that this subset tends to be
derived from co-fractionation-like experiments.

Discrepancies are consistent within and between high-
throughput techniques
A certain level of discrepancy between raw co-fractionation
profiles and interaction databases should be expected, as all
experimental samples undergo some degradation owing to
the constraints imposed by each assay. But do individual
datasets differ randomly or systematically from interaction
databases? For certain gold standard complexes we see a
strong tendency for co-complex members to co-fractionate,
and, conversely, a strong tendency for other complexes to
fail to co-fractionate (Fig. 3a). Across 20 co-fractionation
datasets, we made 39846 pairwise comparisons between
fractionation profiles of cytoplasmic ribosomal proteins,
and 17616 pairwise comparisons of proteins in the C
complex spliceosome. The collection of ribosomal gold
standard interactions are significantly better correlated
than chance (R = 0.64, chance R = 0.48, p = 0.005, per-
mutation test; Fig. 3b), while the collection of spliceo-
some gold standard interactions are significantly worse
correlated (R = 0.27, p < 0.001; Fig. 3c). Calculating sig-
nificance for all 1253 observed CORUM complexes
(permutation test, Benjamini-Hochberg correction),
419/1253 correlate significantly higher than average,
while 294/1253 are significantly lower. This suggests
that some gold standard complexes are enriched for
interacting protein pairs, while others are enriched for
non-interacting protein pairs, where non-interacting
pairs likely represent interactions disrupted by the par-
ticular assay.
Other high-throughput techniques display consistent

over- and under-enrichment of specific gold standard
complexes. Figure 3d shows gold standard complexes
that were consistently predicted in one of three
high-throughput techniques - CF, affinity purification
mass spectrometry (AP-MS), or yeast two-hybrid

Fig. 2 Protein pairs across many gold standard databases do not co-
fractionate, as measured by anti-correlated co-fractionation profiles
(Pearson correlation R < 0). Each point is one dataset. Horizontal
lines show medians. Left: all non-gold standard protein pairs. Only
non-redundant gold standard pairs were analyzed
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(Y2H) - and largely absent from the others. Eighty
gold standard complexes were predicted (≥1 inter-
action per complex) in 4/6 co-fractionation interac-
tomes, while being predicted in no more than a
single AP-MS or Y2H interactome (chance = 14 com-
plexes, p = 0.005, bootstrap). Similarly, 61 gold stand-
ard complexes are predicted in at least 2/3 Y2H

interactomes, while being predicted in at most one
co-fractionation or AP-MS interactome (p < 0.001).
Only 22 AP-MS-specific complexes are selected in
this way (p = 0.49) possibly due to the low CORUM
coverage of interactome AP3 [25]. Technique-specific
consistency is also seen at the level of pairwise inter-
actions (Fig. 3e).

A D

B E

C

Fig. 3 High-throughput techniques consistently recover some gold standard complexes and consistently fail to recover others. a Average
internal, pairwise correlation for every quantified gold standard complex. Only gold standard complexes with at least two identified proteins in
one of 20 co-fractionation datasets are shown (1253/2652 CORUM complexes). Correlation values are pooled across the 20 co-fractionation
datasets, and the number of internal, pairwise comparisons is given by marker size. The pattern expected by random chance is shown (dashed
lines, 95% CI). b Connection matrix, cytoplasmic ribosome. Pairwise correlation values were averaged over 20 datasets. Proteins ordered by
average pairwise correlation. c C complex spliceosome. d Technique-specific gold standard complexes. All gold standard complexes predicted by
at least 2/3 of the published interactomes from a given technique (CF, AP, Y2H), and no more than 1 interactome from the other techniques. e
Connection matrices for the Chaperonin Containing TCP-1 complex (CCT), a gold standard complex, taken from the published interactomes.
White: interacting protein pair. Black: non-interacting
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In addition to being truly non-interacting, the absence
of some gold standard complexes from published inter-
actomes (Fig. 3d) could result from low expression of
interacting partners (rendering them difficult to quan-
tify) or from none of the co-complex members being in-
cluded as baits. To control for this, we additionally
looked at the subset of gold standard complexes where
at least one interaction could potentially be predicted in
each study, as defined by having quantified proteins and
baits (see Methods). The same pattern seen in Fig. 3d
persisted (Additional file 1: Table S1), indicating that
gold standard complexes seen by one method but not
others cannot be explained by lack of co-expression or
choice of bait, and therefore likely reflect the fact that
the physical association of gold standard complexes is
not guaranteed and depends on the local conditions of
the experiment.
We note that the context-specific nature of gold stand-

ard complexes is not limited to the type of
high-throughput experiment (CF, AP-MS, or Y2H). For
example, using co-fractionation data where proteins
were fractionated using a variety of techniques [2]
(Additional file 1: Table S1), the 60S ribosome gold
standard complex consistently co-fractionated via su-
crose fractionation (Additional file 1: Figure S3A) but
consistently failed to co-fractionate via heparin dual ion
exchange (Additional file 1: Figure S3B).

Universal gold standards improve interactome mapping
If a subset of database PPIs consistently fails to resemble
interacting proteins for a given assay, performance
should improve when these PPIs are removed from the
gold standard set. We confirmed this was the case. We
generated co-fractionation-specific gold standard subsets
by selecting those complexes that were significantly
enriched for interactions in interactomes CF4, CF5, and
CF6 [2–4]. Evaluating significance at four p-value
thresholds (p < 1, 10− 2, 10− 6, 10− 10) produced four sub-
sets of CORUM complexes that contain 302, 122, 95,
and 80 complexes, respectively (Additional file 2). To
avoid training and testing on the same data, we defined
the co-fractionation-specific gold standard subsets using
interactomes published by other groups (CF4, CF5,
CF6), and these gold standard subsets were then used to
predict interactomes using co-fractionation data gener-
ated by our group.
These co-fractionation-specific CORUM subsets corres-

pond significantly to housekeeping protein complexes.
Using the Gini coefficient, a measure of inequality, we cal-
culated consistency of mRNA expression (Fig. 4a) [26] and
protein expression (Fig. 4b) [27] across tissues and cell
types. As quantified by lower Gini coefficients, the expres-
sion levels of co-fractionation-specific complexes are sig-
nificantly more consistent across tissues than other

CORUM complexes (mRNA: Gini = 0.28 vs Gini =
0.40, p = 2.2 × 10− 16, Welch two-sample t-test; protein:
Gini = 0.40 vs Gini = 0.49, p = 2.2 × 10− 10). This agrees
with an orthogonal analysis of a mouse co-fractionation
dataset collected by our group, which analyzed protein
co-fractionation across seven tissue types [28]. Quantify-
ing co-fractionation via Pearson correlation, 15 CORUM
complexes were found to be housekeeping complexes, as
defined by average pairwise correlation significantly
greater than chance in all seven tissues (p < 0.05, permuta-
tion test; Fig. 4c). Of these 15 complexes, 8 overlap with
the 122 co-fractionation-specific CORUM complexes, a
significant overlap (p = 7.6 × 10− 8, hypergeometric test;
overlapping complexes marked by asterisk * in Fig. 4c).
Additionally, we performed a functional enrichment ana-
lysis of the p < 10− 2 co-fractionation-specific CORUM
subset vs the subset of CORUM with observable proteins
in co-fractionation studies (p < 101 subset) (Gene Ontol-
ogy BP, CC, and MF; hypergeometric test). Consistent
with the two previous analyses, this enrichment analysis
confirms that the co-fractionation-specific subset of
CORUM is enriched for housekeeping processes such as
translation and transcription (Additional file 3: Table S2).
Using gold standard subsets generated in this way dras-

tically alters the predicted interactomes (Fig. 5). Control-
ling interactome quality via the ratio of true positives (TP)
and false positives (FP), calculated as precision (TP/(TP +
FP)), well-chosen gold standard subsets increased the size
of the predicted interactome by up to an order of
magnitude over randomly-chosen subsets (Fig. 5a-c). Since
FPs are defined as inter-complex protein pairs, they grow
with the square of the gold standard set size. TPs,
intra-complex pairs, grow linearly. Therefore there is a
tendency for precision estimates to increase artificially as
the gold standard set shrinks. For this reason we compared
all co-fractionation-specific subsets (Fig. 5 black) to ran-
dom subsets of the same size (red). Precision-recall curves,
which visualize the tradeoff between quality and quantity
of the interactomes, are also improved over random for in-
creasingly stringent co-fractionation-specific gold standard
subsets (Fig. 5d-g).

Discussion
Here we have estimated the discrepancies between inter-
actome data generated by co-fractionation and curated
gold standard interactions from the CORUM database.
Across 20 datasets, 37% (54859/149477) of gold standard
protein pairs display at most weak evidence for interaction
(R < 0.25, Pearson correlation), and 23% (34442/149477)
show no evidence of interaction (R < 0) (Figs. 1d, 2). Other
databases have a larger proportion of anti-correlated inter-
actions, with up to 55% of database PPIs showing no evi-
dence for interaction (Fig. 2). Protein interaction networks
have been compared elsewhere. For example, comparing
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the power of five PPI networks to predict cancer genes
[29], benchmarking 21 networks for their ability to predict
disease genes [30], and investigating their impact on re-
covering novel PPIs from high-throughput data [31].
However, to our knowledge our study is the first to specif-
ically address the context-specific nature of PPI entries in
these databases.
Since CORUM is manually curated from low-throughput

experiments, we do not interpret these anti-correlated pairs
as errors in the database. Rather, we attribute any discrep-
ancy between our raw data and the databases to the
context-specific nature of protein interactions and the fact
that databases compile evidence from many different ex-
periments and conditions. Indeed, under certain condi-
tions, 60S ribosomal proteins, which have been extensively
studied and shown to interact, display poor evidence of
interaction (Additional file 1: Figure S1).
Therefore studies should take care not to conflate

interaction databases, which attempt to list all interac-
tions that can interact, with the subset of interactions
that are in fact interacting in a given experiment. Doing
so limits high-throughput interactome mapping studies.
First, it artificially raises all estimates of error rates, since

by definition a portion of the reference positive set is in-
distinguishable from the negative set. Second, when gold
standard interactions are used as training labels in a
classifier [2, 3, 7, 11], classification accuracy will be re-
duced and fewer interactions and/or more noisy interac-
tions will be predicted.
One solution is to use technique-specific gold standard

subsets. We show that subsets of gold standard data-
bases that have consistent, independent evidence taken
from similar conditions to those under which the raw
data was produced can increase the size of interactomes
judged at the same precision level (Fig. 4). We include
this set of CORUM gold standard complexes and recom-
mend it for future co-fractionation studies.

Conclusion
Motivated by the fact that local conditions can modulate
PPIs [13], this study investigated the degree to which
PPI databases (“gold standards”), which compile PPIs
and complexes across many experiments, agree or dis-
agree with data from a single experiment. Using a con-
servative measure of protein interaction (negatively
correlated co-fractionation profiles) we find that up to

A
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Fig. 4 Gold standard complexes consistently predicted by co-fractionation correspond to housekeeping complexes. a Consistency of mRNA
expression levels across tissue types, Gini coefficient [26]. b Consistency of protein expression levels across tissue and cell types, Gini coefficient
[27]. c Fifteen housekeeping CORUM complexes, defined by significant pairwise correlation between co-fractionation profiles in all seven tissues.
The 8/15 complexes that overlap with the 122 complex subset of CORUM are marked by asterisks
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55% (39 +/− 11%, mean +/− s.d.) of gold standard PPIs
show no evidence of interacting during a single experi-
ment. Further, for some gold standard complexes the
discrepancy between databases and single experiments is
systematic. For example, across CF experiments, pro-
teins in Chaperonin Containing TCP-1 complex consist-
ently resemble interacting proteins, while proteins in the
Spliceosome consistently do not (Fig. 3). When data is
gathered from different assays (AP-MS and Y2H) we find
similar consistency but for different gold standard com-
plexes. We interpret this to mean that there is a subset of
database PPIs that is inherently more detectable by CF
datasets than by AP-MS and Y2H, and vice versa – i.e.
experiment-specific gold standard subsets. Indeed, using a
CF-specific subset of gold standards dramatically improves
interactome mapping for CF data (Fig. 4). Therefore, we
recommend using this subset as a gold standard for future
CF studies. More generally, our analysis highlights the
error inherent in conflating the entire set of PPIs listed in
PPI databases with the subset of PPIs that are truly inter-
acting in any given single study.

Methods
Gold standards databases
We primarily used CORUM core complexes as an LC
database of known protein complexes (Comprehensive
Resource of Mammalian protein complexes, released
February 2017) [32]. CORUM is based entirely on ex-
perimentally verified interactions, all of which must have
extensive low-throughput supporting data. To provide a

broad sample of databases, we also analyzed interactions
from an additional ten LC interaction databases: HPRD
(release 9, last modified April 13, 2010) [16], MINT
(downloaded June 8, 2017) [17], MENTHA (release June
5, 2017) [18], BIND (release 1.0, last modified May 20,
2014) [19], HIPPIE (release 2.0, last modified June 24,
2016) [20], IID (release April 2017) [21], BioGrid (release
3.4.149, accessed June 8, 2017) [33], PINA (version 2, last
updated May 21, 2014) [22], HINT (version 4, downloaded
June 8, 2017) [23], and DIP (release February 5, 2017) [24].
We analyzed a subset of the full BioGrid database for
which interactions were supported by at least two publica-
tions (Nfull = 254886 interactions, Nsubset = 39524). For da-
tabases such as CORUM that list complexes rather than
pairwise interactions, gold standard interactions were de-
fined as all protein pairs that are co-members of at least
one gold standard complex. Only non-redundant, i.e.
unique protein interactions were analyzed.

Co-fractionation profile datasets and mass spectrometry
The majority of co-fractionation data analyzed in this
study was collected by our group and constitutes a broad
sampling of SILAC-labelled co-fractionation datasets.
Data was collected for four independent experiments,
each mapping interactome rearrangements to an experi-
mental treatment. Datasets in this study were separated
by condition and replicate, such that an experiment with
two conditions and three replicates would yield six data-
sets analyzed here. A total of 20 datasets are included in
this study. Three experiments are previously published:

A B C

D E F G

Fig. 5 Using technique-specific gold standard subsets increases interactome size and/or quality. a The size of interactomes produced by
co-elution gold standard subsets of varying stringency (solid) or randomly selected subsets of the same size as the co-elution specific subsets
(dashed, 95% CI). Interactomes have 50% precision. b 75% precision. c 90% precision. d Precision-recall curve for the interactome predicted using
the entire gold standard set of interactions. e Precision-recall curve predicted using the gold standard complexes that satisfied the 10− 2

threshold. f 10− 6 threshold. g 10− 10 threshold. Precision-recall curves using random subsets of the same size are shown in red (95% CI)
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two that map the reorganization of the HeLa interac-
tome in response to stimulation with EGF [5] and
Salmonella enterica infection [6], and one that maps the
response of Jurkat T cells to Fas-mediated apoptosis [7].
All fractionation was achieved by size exclusion chroma-
tography except [7] which used blue-native page. Both
methods separate protein complexes by molecular
weight. The third co-fractionation dataset is available in
this manuscript (Additional file 4: Table S3). All
co-fractionation data was quantified using SILAC ratios
over successive fractions of a separation gradient, i.e. a
chromatogram. Only protein chromatograms with quantifi-
cation in five or more fractions were analyzed. In order to
compare interactions seen by different fractionation
techniques, we also analyzed previously published
co-fractionation data generated by extensive biochemical
fractionation [2]. All co-fractionation profile datasets are
composed of co-fractionation profiles, which are protein
amount measured over successive fractions, quantified by
mass spectrometry. There is one profile per protein or pro-
tein group for each combination of replicate and condition.

Published PPI interactomes
In addition to raw co-fractionation data, we analyzed
twelve published human protein interactomes: three de-
rived from co-fractionation data published by our lab
(CF1 [7], CF2 [5], CF3 [6]), three derived from
co-fractionation data not published by us (CF4 [3], CF5
[2], CF6 [4]), three AP-MS derived interactomes (AP1
[9], AP2 [10], AP3 [25]), and three Y2H interactomes
(Y2H1 [12], Y2H2 [34], Y2H3 [35]). All interactomes
were high-throughput and represent a broad sampling of
the full human interactome.

Evaluating gold standard complexes
Raw co-fractionation profiles: To evaluate the degree to
which gold standard PPIs are supported by co-fractionation
data, we calculated the Pearson correlation coefficient and
Euclidean distance between each pair of chromatograms in
a dataset. For both measures, missing values in the
chromatograms were replaced by zeros. When calculating
Euclidean distance, all chromatograms were normalized to
have a minimum value of 0 and a maximum value of 1.
High correlation or low Euclidean distance was taken as
evidence that the gold standard interaction was interacting
in the sample.
Published interactomes: We mapped published pair-

wise protein-protein interactions to gold standard
CORUM complexes. For each published interactome, we
tested whether gold standard complexes were enriched
for published interactions, meaning they contained sig-
nificantly more pairwise interactions between complex
members than the average rate (hypergeometric test).
We took significant enrichment as evidence that the

published interactome supported the gold standard
complex. To standardize interactomes with each other
and CORUM, all isoform tags were removed from
protein IDs.
To control for expression and different baits, we also

defined the subset of gold standard complexes in each
study in which at least one interaction could be pre-
dicted. For CF interactomes this was defined as a com-
plex in which at least two co-complex members are
present in the raw data (raw data for [3] downloaded
here http://metazoa.med.utoronto.ca/; [4] and [2] raw
data taken from publication). For AP-MS interactomes
we assumed the matrix model, meaning that a bait pro-
tein need not be present in a gold standard complex for
an interaction to be predicted in the gold standard com-
plex, as long as a gold standard complex member is as-
sociated with a bait protein. Therefore if at least two
members of the gold standard complex were present in
the AP-MS interactome, we defined that gold standard
complex as a complex that could be predicted by the
study. Finally, for Y2H interactomes we defined a gold
standard complex as able to be predicted if at least one
complex member was a bait protein.

Co-fractionation-specific gold standard subsets
In this study, we used subsets of the gold standard com-
plexes that are consistently supported by co-fractionation
interactomes. For these co-fractionation subsets, we used
all CORUM complexes that were significantly enriched for
interactions (hypergeometric test) in CF4, CF5, and CF6.
Significance was assessed at a range of p-value thresholds:
1, 10− 2, 10− 6 and 10− 10. A threshold of p = 1 produced the
subset of CORUM complexes with at least one interaction
in CF4, CF5, and CF6. The number of CORUM complexes
(interactions) in each subset were 302 (33378), 122
(10953), 95 (6326) and 80 (4861), respectively.
To control for the effects of simply reducing the size

of the gold standards, we generated random subsets of
gold standard PPIs with the same size as the selected
subsets. Of the full 46413 unique. PPIs in the core
CORUM complexes, we randomly sampled 33378,
10953, 6326, and 4861 PPIs.
without replacement. Random sampling was repeated

100 times for each of the subset sizes, and interactomes
were predicted using each random subset with the
PrInCE software package.

Interactome prediction
For this study, interactomes were predicted using the
PrInCE software (Predicting Interactomes via Co-Elution),
a software package developed by our lab for the analysis of
co-fractionation datasets [11]. PrInCE measures the simi-
larity between every pair of co-fractionation profiles using
a variety of similarity measures, such as Pearson
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correlation and Euclidean distance. Gold standard interac-
tions are used as true positive labels (TP) in a Naive Bayes
classifier. False positive interactions (FP) are defined as in-
teractions between a pair of proteins that both occur in
the gold standard database, but are not members of the
same gold standard complex, e.g. an interaction between a
ribosomal protein and a proteasomal protein. PrInCE as-
sesses the quality of the predicted interactome using preci-
sion, where precision = TP/(TP + FP).

Additional files

Additional file 1: Figure S1. Restricting gold standard PPIs to those
supported by two or more publications does not eliminate uncorrelated
protein pairs, as measured by Pearson correlation R < 0. Each point is one
dataset. Horizontal lines show medians. Red: all non-gold standard
protein pairs. Black: non-redundant gold standard pairs. “All pairs” and
“BioGrid” correspond to Fig. 1. Figure S2. Co-fractionation datasets are
more consistent with database PPIs with “co-fractionation-like” evidence
codes, e.g. “density sedimentation” and “molecular sieving”. Top: Percent
fraction of anti-correlated pairs across co-fractionation datasets, sorted by
average percent. Evidence codes are given on the x-axis. Bottom: Average
Pearson correlation co-efficient. This analysis is similar to Fig. 2. Each dot
represents on co-fractionation dataset. For each evidence code, only
datasets with at least 100 database PPIs are shown. All evidence codes
with at least one such dataset are shown. Table S1. Some CORUM
complexes are predicted by a single high-throughput technique, as
measured by average complex coverage. Complex coverage = number of
pairwise interactions in a published interactome / total pairwise
connections within a complex. Parentheses show number of complexes
averaged. CF-specific complexes correspond to numbers 1–80 in Fig. 3d,
AP/MS-specific to 81–102, and Y2H-specific to 103–163. To control for
expression and bait selection, only complexes that could be be predicted
in each interactome are included (see Methods). Figure S3. 60S
ribosome co-fractionates via sucrose fractionation (A) but not via heparin
dual ion exchange (B). Pearson R. Plots show replicates. Missing (black)
are protein pairs where neither protein was detected. (DOCX 561 kb)

Additional file 2: Table S4. Subset of CORUM core complexes that
consistently co-fractionate (Feb 2017 CORUM release). Complexes were
chosen if they were significantly enriched for pairwise interactions in three
published co-fractionation interactomes (Wan et al. 2015, Havugimana et al.
2012, and Kirkwood et al. 2013). Enrichment was calculated with a
hypergeometric test, and significance was evaluated at four thresholds:
p < 1, p < 1e-2, p < 1e-6, and p < 1e-10. All data aside from columns
“p < 1”, “p < 1e-2”, “p < 1e-6”, and “p < 1e-10” are taken from the
CORUM core data file. (XLSX 202 kb)

Additional file 3: Table S2. Gene Ontology (GO) enrichment of
proteins in co-fractionation-specific subset of CORUM. Hypergeometric
test. “Hits” are proteins from the co-fractionation-specific subset
(p < 10–2) and “background”/“universal” are all proteins from CORUM
complexes that were detected, but not necessarily co-fractionating
(p < 1) (see Methods for CORUM subset definition). (XLSX 43 kb)

Additional file 4 Table S3. Third co-fractionation dataset. (CSV 782 kb)
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